IMPLEMENTATION OF ARIMA MODELS ON DEMAND FORECASTING AT PT WORLD YAMATEX SPINNING MILLS

dc.contributor.authorNurhakim, Rachman
dc.contributor.authorRochman, Didit Damur
dc.date.accessioned2011-03-21T02:13:49Z
dc.date.accessioned2019-10-21T11:46:02Z
dc.date.available2011-03-21T02:13:49Z
dc.date.available2019-10-21T11:46:02Z
dc.date.issued2009-12-10
dc.description.abstractCompany activities are in uncertain circumtances so need for tool or method to predict or forecast the future is deeply needed. This research, forecasting method, uses Autoregressive Integrated Moving Average (ARIMA). ARIMA have ability to solve the forecasting problem by applying Autocorrelation And Partial Autocorrelation Coefficients. Temporary model are (2,2,1)(1,1,1)15, (1,1,2)(1,1,1)15, and (2,1,2)(1,1,1)15. Checking for Ljung-Box Q Statistics by Chi-Square (X2), one of the result are p-value at lag 12 is 0.01, 0.039, and 0.024 for each model, because the closest value to 0.05, so the chosen model is ARIMA(1,1,2)(1,1,1)15en_US
dc.identifier.issn1978-774X
dc.identifier.urihttp://repository.widyatama.ac.id/handle/123456789/1311
dc.language.isoenen_US
dc.publisherUniversitas Widyatamaen_US
dc.relation.ispartofseries;KII CD 001
dc.subjectAutoregressive Integrated Moving Averageen_US
dc.subjectAutocorrelation And Partial Autocorrelation Coefficientsen_US
dc.subjectModel Analysisen_US
dc.titleIMPLEMENTATION OF ARIMA MODELS ON DEMAND FORECASTING AT PT WORLD YAMATEX SPINNING MILLSen_US
dc.title.alternativeProceeding, International Seminar on Industrial Engineering and Management Inna Kuta Beach Hotel, Bali December 10th-11th ,2009en_US
dc.typeOtheren_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
content.pdf
Size:
2.21 MB
Format:
Adobe Portable Document Format
Description:
content
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.79 KB
Format:
Plain Text
Description: