CHAPTER 5 CLOSING

5.1 CONCLUSION

The thesis has been discussed two eminent interior routing protocols. Their performances have been analyzed considering the parameters of packet loss, end to end delay and convergence timing. In our analysis, we have found that EIGRPv6 performs much better that OSPFv3 in all these three cases. So our recommendation is to use EIGRPv6 as an interior routing protocols in IPv6 network. But the main disadvantage of EIGRPv6 is that, this routing protocols can only be used in the Cisco’s routers only. In this case, OSPFv3 is the best alternative. In future, we will compare these routing protocols with considering the security issues of IPv6. The work will be also extended to the real life devices.

This project finds that upon comparing the performance of OSPFv3 and EIGRPv6 using the tests that have been conducted throughout this thesis, EIGRPv6 was the faster performing protocol. However aside from the overall conclusion, a series of thought provoking results have been found in this project. These include:

• That EIGRPv6 perform better in every test when it was configured for the point to point topology.

• OSPFv3 is work well in big network on average performed consistently better when IPSec was enabled. By comparison, EIGRPv6’s performance was always degraded when its MD5 authentication mechanism was enabled.

Therefore, the principle conclusion from the results of this thesis is that when comparing OSPFv3 and EIGRPv6 within a small flat IPv6 enterprise network, EIGRPv6 outperforms OSPFv3 in terms of start-up and re-convergence speed and is therefore the faster protocol. This conclusion has been generated by testing OSPFv3 and EIGRPv6 in both a point to point and LAN based network environment, where OSPFv3 took consistently longer to complete its operations than that of EIGRPv6.
5.2 SUGGESTIONS / RECOMMENDATION FOR FUTURE STUDIES

This project is mainly focused on comparison of OSPFv3 and EIGRPv6 by using Packet tracer; Future research, it may compare of OSPFv3 and EIGRPv6 using Opnet by the feature below:

➢ Delay
➢ Jitter
➢ Quality service