

2015 International Conference on Information, Communication Technology and System

General Pattern Identification of Debugging System

Falahah1
Informatics Department, Universitas Widyatama, Bandung

School of Electrical Engineering and Informatics,
Institut Teknologi Bandung

Indonesia
falahah@widyatama.ac.id

Iping.S.Suwardi2), Kridanto Surendro3)
2,3)School of Electrical Engineering and Informatics,

 Institut Teknologi Bandung
Indonesia

iping@informatika.org 2), endro@informatika.org 3)

Abstract— Debugging is an important work in software
development. Along with the increasing complexity of the
software debugging process also becomes as simple as the
original. This paper will discuss the generic pattern of
debugging system. Vary approaches and algorithms that have
been proposed to build a good debugger system and easily
used by system developers. The bug can be the caused by
internal or external sources. All debugger software is ideally
fulfil 4 principle Heisenberg principle ie, truthful debugging,
program context information system development and
debugging trails. But actually not all debuggers can meet this
requirement. Debugger also can classify in many ways such as
source-level and machine-level, stand-alone and IDE, 4GL
and 3GL, OS Kernel and Application Level, and Application-
specific or in-circuit emulation. Debugger architecture can
typically divide into 5 layers ie the user interface layer, the
kernel layer, OS APIs, OS and CPU, before it touch the user
program. Researchers also proposed many techniques in
debugging methodologies such as Darwin, message oriented,
backtracking approach, and concept assignment (CA).
Implementation of CA opens new opportunities to a proposed
new model of debugging that can leverage into a high level of
software as a part of information system. The CA approach
can implement According to the V-model of software
development approach.

Keywords— debugging, debugger, techniques, general
pattern, concept assignment, v-model..

I. INTRODUCTION
Debugging a code is a common activity in application

development. Debugging process is done by programmer
since early programming language has been used and it
became more complex as complexity of programming
environment increased. Usually, programmer doing debugging
process using specific tools depends on programming
language is used or the platform of the software. Despite of
varies debugger tools, the study show that the debuggers
usually have similar process and architecture.

The software become more complex and all interactions

cannot be predicted, specifications usually are not written to
the level of programming details, and implementation is an
inherently difficult and error prone process. As software gets
continuously more complex, debuggers become more and
more important in tracking down problems.

Based on the definition, debugging is the process of
searching for a bug, where nowadays many opportunities
cause a bug in the software production process. The bug can
be caused by internal sources such as library supporters
unavailable, inaccessible certain services on the operating
system, the version of services is not compatible, and so on, or
external such as the programmer fault, syntax error, or
requirement misinterpretation. All the bug can caused the
software crash and according to software testing jargon that it
is impossible to make a software 'free of error' but the to
minimize the error, so bug usually come in any kind of
software, even exist on a commercial software that have been
used widely.

On the other side, debugging process can be done into
several levels, from source-code level, into lower level on
machine-code. Some research show that mostly debugging
tools can debug program but some of them still have
constraint in fulfil the 'basic' debugging requirement.

The aim of this paper is to review the generic pattern of
debugging system and some approach in debugging
techniques. Debugging not only can be done in lowest level of
programming activity, but also can be mapped into general
system requirement using concept assignment approach. It can
offer more opportunity to extend the research on debugging
into higher conceptual level of software design and
development.

II. BASIC CONCEPT OF DEBUGGER

Rosenberg [4] describe the debuggers are software tools

that help determine why the program does not behave
correctly. The inner working of debugger required a suite of
sophisticated algorithms and data structures to accomplish
their tasks.

Debugger is used by developer, maintainer, tester and also

2015 International Conference on Information, Communication Technology and System (ICTS)

978-1-5090-0096-8/15/$31.00 © 2015 IEEE 67

adapter, and used by rerunning the applications in conjunction
with the debugger tool itself. The debugger carefully controls
the application using special facilities provided by the
underlying operating system to give the very fine control over
the program under test.

In scope of source code, bug can occurs in many way in
program as explain by Spohrer and Soloway [10]:

1. Boundary problem, include off-by-one bugs (i.e.
loops that terminate one iteration too early or too
late).

2. Plan dependency problem, describe misplaced code
often related to nesting, such as output statements
that should be within a specific clause of an if-then
statement rather than after the completed if-then
construct.

3. Negation and whole part problems, are related to
misuse of logical constructs, such as using an OR
when an AND is needed.

4. Expectations and interpretation problems, are
misinterpretation of how certain quantities are
calculated.

5. Duplicate tail digit problems, involve dropping the
final digit from a constant with duplicated tail digits.

6. Related knowledge interference problems occur when
correct knowledge is similar to incorrect knowledge
and the two can be confused.

7. Coincidental ordering problem, occur when
arithmetic operations are to be carried out in the order
in which they appear (left to right) but parentheses
are still necessary to override operator precedence.

The step of using debugger can describes in four steps as
follow [4]:
1. Debuggers are used at program inception time, when only

part of the implementation of design is complete.
2. When an identifiable module or subsystem is completed

and ready for use, to test the integration of a module with
other components.

3. As testing progresses on a completed program and
uncovers new defects.

4. As changes and adaptations are made to existing program
that introduce new complexities and therefore destabilize
previously working code

There are numerous approaches to debugging, perhaps as
many as there are bugs. Some example techniques that
common used are printing statements, printing to log files,
sprinkling the code with assertions, using post mortem dumps,
having program that provide function call stacks on
termination, profiling, heap checking, automated data flow
analysis, reverse execution, system call tracing tools, and
interactive source-level debugging.

Interactive debugging tools also come in assorted flavors
such as:

1. Kernel debugger, dealing with problem with an OS
kernel on its own, or interaction between heavily OS
dependent application and the OS.

2. Basic machine level debugger for debugging the
actual running code (machine instruction), as they are

processed by the CPU.
3. In-circuit emulator (ICF), which emulates the system

services so all interactions between an application
and the system can be monitored and traced.

4. Interpretative programming environment provided
the debugger that well integrated into the run-time
interpreter and has very tight control over the running
application
such as in Basic, Smalltalk, and Java.

Source-level symbolic debugging is the most frequently
used technique for debugging end-user application, and on this
approach, the high-level language source code is executed
directly by the CPU

III. PRINCIPLE OF DEBUGGER DESIGN AND THE
CLASSIFICATION

A. Debugger Design Principles
Four principles of debugger design and development that

arise some problem are [4] Heisenberg principle, truthful
debugging, program context information and debugging trail
system development
Heisenberg Principle

Heisenberg principle state that the debugger must intrude
on the debuggee in a minimal way. The act of debugging an
application should not change the behavior of the application.
In the case of software debugging, which the application and
debugger is controlled by the same operating system, this
basic principle is sometimes has violated by the debugger. The
problem in fulfill Heisenberg principle has considered by OS
and debugger designer, because, usually, the better they are
able to keep the debugger from being intrusive and from
impacting the behavior of the debuggee, the fewer bugs will
disappear and become elusive only when run under the
auspices of a debugger, and no effective way for developer to
proceed.
Truthful Debugging

The principle states that the debugger must never mislead
the user. Any misinformation will devastate the user, send the
user off in the wrong direction potentially and cause a general
lack of trust to develop between the user and the debugging
tool.
Program Context Information

Program context may refer into several different types of
information such as source code, stack back-trace, variable
values, thread information and more. When the application
crashed, the developer expects the debugger to show the
location of source code and highlight the line. Sometimes, this
may not point to the actual cause of the bug. Many bugs occur
in one place but their effect (a crash) does not show up until
much later. Stack back-trace is the process that allows
developer to see the list of functions that the program passed
through on the way to the current location.
Debugging Trails System Developments.

This principle states that system development occurs long
before any corresponding strong debugging support for the

68

new system development is available. Debugger developers
need to push the system vendors to provide the necessary
infrastructure to enable support of the latest technologies.
Application developer also needs to push the debuggers to
have ability to debug applications that being more complicated

B. Debugger Classification
Generally, the debugger can classify as bellow:

1. Source level (symbolic) and machine level.
Source level debugger usually works on compilation

process, which transforms the source code into machine
instruction. Usually, compilation process also provide
extensive debug information about the source code and how it
was mapped into machine code. Source-level debugger need
to provide the low-level information that usually done by
providing a CPU view that includes disassembly information,
register values, a memory dump facility, and perhaps other
machine-specific information.
2. Stand-alone and Integrated Development

Environments
A stand-alone debugger is a program dedicated solely to

debugging and is separate from compiling and editing.
Integrated Development Environment (IDE) provide inline
debugging so programmer can work more productive. The
tools allow programmer to set some breakpoints and make
changes to the source code via normal editing functions. But,
GUI Debugger is more intrusive than a simpler, character
mode debugger. But, stand-alone debugger using run-time
library and lack of access to the persistent compiler symbol
tables and to the compiler itself.
3. 4GL and 3GL.

4GL are used primarily in high-productivity business-
oriented application-generation tools with an emphasis on
database-based application. Most of 4GL tools is based on an
interpreted language such as Basic or Smalltalk. Debugging is
made dramatically simpler because the interpreter provide a
safe, protected environment in which both the target
application and the debugger can run. Some features that
usually available on 4GL debugger such as breakpoints, watch
expressions, single step, procedure step, out-of-line
interpreter, and procedure call stack.
4. OS Kernel and Application-level.

Kernel debugging is a necessary part of developing device
drivers. Modern OS have set of APIs and tools to allow the
modification of OS behavior via the addition of specialized
device drivers. Kernel debugging is normally set ip in such a
way that two machine are involved, the host machine and the
target machine being debugged. This way can give the
debugger the complete picture during debugging. As the
machine crashes, debugger on the crashing machine could not
generate the report, but the remote machine can capture this
critical information.

5. Application-specific and In-circuit emulation
Application-specific debuggers are general-purpose, high

level debuggers that control one of just a few application at
one time. The debugger notify the OS of their intention and
get notification from the OS when important events occur
within one specific application.

In-circuit emulators sit between operating system and the
bare hardware and can watch and monitor all processes and all
interaction between applications and the operating system.
These kind of debugger usually used for development of add-
on hardware or for very special type of heavily system-
interacting applications.

IV. GENERAL DEBUGGER ARCHITECTURE, PROCESS
AND SERVICES

Rosenberg [4] describes the typical architecture of
debugger as shown on figure 1. The figure shows the basic
element of debugger system. Outer-most ring represent user
interface and inner-most circle represent the core of the
debugger interfacing to the underlying operating system.

The common steps that followed when debugging has
observed by Gould and Drongowski (1974) and Gould (1975)
consists of four steps [5]:

1. Choose a debugging tactic (such as read the line of
code one by one until something suspicious was
detected).

2. Find a clue (something suspicious in one of the
information sources) to a bug.

3. Reporting the line containing the clue of error.
4. If nothing suspicious was detected, chose another

debugging tactic.

Figure 1. Typical debugger architecture [4]

Another approach of debugging tactic is goal subjects as

explain by Vessey[13] :
1. Determine the problem with the program (compare

correct and incorrect output)
2. Gain familiarity with the function and structure of the

program
3. Explore program execution and / or control
4. Evaluate the program, leading to a statement of

hypothesis of the error;
5. Repair the error
Vessey also draw a debugging strategy paths to describe

the error possibilities, as show in figure 2.

69

Figure 2. Vessey’s possible debugging strategy paths [13]

Tubaishat [12] modeling the conceptual architecture of

BugDoctor tool to aid programmers in finding errors. The
model is based on cognitive science studies describe the
conceptual model for software fault localization as shallow
reasoning, that used test cases, output, a mental model, and
diagnostic rules of thumb, and deep reasoning which is
characterized by intensive use of program recognition. The
last one is supported by a knowledge base of programming
concepts library which include a hierarchy of problem domain,
algorithmic, semantic, and syntactic programming language
knowledge/rules.

During deep reasoning, the developer usually uses two
level approach in code recognition and fault localization:
coarse-grained analysis and fine-grained analysis.

Traditionally, debugger has several tasks such as [5]:
1. Setting breakpoints that can be done by a suer

through an interface. When the process that
executed reach the breakpoint, an interactive
session begins.

2. Step over, is an operation consists of moving to
the following node in the code after having
interpreted the current node.

3. Step-into, consists of moving to the next node in
the code according to the application control flow.

4. Continue, the execution of an application may be
resumed by continuing it

5. Terminate, the execution might be prematurely
ended with the terminate operation.

Figure 3 explain the debugger services in class model.

Figure 3. General services on debugger system [5]

V. DEBUGGING APPROACH
Roychoudhury and Vaswani [6] proposed ‘Darwin’

methodology for debugging evolving program. Using this
approach, debugger collect and suitably compose the path
conditions of the failed test case in two program version to
generate an alternate test input, and then in the next phase,
debugger compares the trace of generated test input with the
trace of failed test input to produce a bug report. Trace
comparison proceeds by employing string alignment method
(widely used in computational biology for aligning DNA
sequences) on the trace, and the branches which cannot be
aligned appear in the bug report.

Stanley, et.al [10], proposed the message-oriented as
approach on distributed debugger. The debugger is post-
mortem and consists of effective strategy to find the source of
unintended side-effects, start with the chain of expressed
intentions. The method is tested into distributed program.

Backtracking approach is a common approach on
debugging techniques and is implemented in many debugger
tools. Agrawal et.al, argue that using backtracking facility in
interactive source debugger, allows programmers to mirror
their though processes while debugging by working
backwards from the location where an error is manifested and
determining the conditions under which the error occurred,
and add the ‘what if’ facility to allow the programmer change
program characteristics and re-execute from arbitrary points
within the program under examination.

Silva [9] compares some algorithm in debugging strategies
implemented on ET (execution tree) such as single stepping
(Shapiro, 1982), top down search (Av-Ron, 1984), Top-down
Zooming (Maeji and Kanamori, 1987), Heaviest First (Bink,
1995), and promote new algorithm : less YES First (Silva,
2006). The research focuses on algorithm for visiting node on
a piece of code (execution tree).

Concept Assignment (CA) [2] is a process for high-level
program comprehension and relates human-oriented concepts
to implementation-oriented artefacts. Human-oriented
concepts often expressed using UML diagrams or other high-
level specification schemes. On the other side,
implementation-oriented artefacts are expressed directly in
term of source-code features, such as variables and method
calls.

CA attempts to work backward from source code to
recover the ‘concepts’ that the original programmer where
thinking about as they wrote each part of the program [7].
Generally, each individual source code entity implements a
single concepts and the granularity of CA can breakdown into
the smallest such as per token, per-line, or larger such as per
block or per-method. CA sometimes visualized by coloring
each source-code entity with the color associated with that
particular concept. Adopting the set concepts, CA can be
expressed mathematically.

Given U as set of source code unit, u0, u1, …un, and a set
of concepts C, c0,c 1,c2,…,cm. The CA can construct a
mapping from U to C, or mapping itself. It is known as
concept assignment [7].

Implementing concept assignment include two phases:

70

1. Concept selection: determine the set C of human oriented
concept that are implemented in the source code.

2. Concept mapping: map each source code entity (at some
specified granularity) to a particular concept from C.

Both phases can take place manually or automatically. In
automated CA, a software tool analyses the source code and
automatically selects the most appropriate concept for each
source code entity (for some definition of appropriate).
Automated system usually implement some artificial
intelligence to determine the ‘approriate’ concepts.

Application of concept assignment mostly in program
understanding, such as Biggerstaff et al [2] who is simply
present a tool for software comprehension and visualization,
Gold and Bennet state that the primary motivation for CA is
providing the maintainer with an additional knowledge source
from which to work. Kontogiannis et al, use CA information
to assist in the detection of cloned source code, but no
automated client that uses this information.

Singer [7] argue that a machine-level program
understanding should facilitate further automated analysis or
transformation of subject program, and by using CA, the
information can support automated debugging. The idea is
implemented on code generator debugger techniques and the
result shows the similarities on structure of source-code with
conceptual, and the tools can detect anomalies as potential
bugs.
 Research on CA opens the new opportunities to elaborate
the approach in debugging for higher level abstraction of
software, such as considering software as a part of information
system. The software can include some component such as
library component from operating system, database, data
itself, control, and many more. The granularity of CA can
elaborate to highest level such as business requirement is
mapping into acceptance criteria or it can breakdown into
lowest level such as system requirement specification, high
level design, and so on, as describe in V model of software
development.

VI. CONCLUSION
Debugging is an important function in software

development and to debug the software it needs the debugger.
The research on debugging area has conduct in many research
areas such on algorithms, technique, approach, and data
structure. Many researchers had determined the generic
pattern of debugger architecture, functions, processes and
services. But the research opportunities still open widely as
the programming and software development increase their
complexity rapidly.

The adoption in debugging techniques that already
proposed includes Darwin method, backtracking method,
message-oriented, and concept assignment. The concept

assignment approach offer the possibilities to map the human-
oriented concept into program-oriented and also can use as an
approach to identify disoriented transformation between the
concept. It opens new opportunities in research development
of build generic debugging system for higher level
presentation of software system.

REFERENCES

[1] Agrawal, Hiralal, et al (1991), An Execution-Backtracking Approach to
Debugging, Journal IEEE Software Volume 8 Issue 3, May 1991, Page
21-26

[2] Biggerstaff, Ted J, and Mitbander, et al (1993), The Concept
Assignment Problem in Program Understanding. ICSE '93 Proceedings
of the 15th international conference on Software Engineering, Pages
482-498.

[3] Ko, A., & Myers, B. (2005). A framework and methodology for
studying the causes of sofware errors in programming systems.Journal
of Visual Languages and Computing, 16, 41–84.

[4] Rosenberg, Jonathan B, (1996), "How Debugger Work: Algorithms,
Data Structures, and Architecture", John Wiley & Sons, Inc.

[5] R McCauley et al, (2008), Debugging: a review of the literature from an
educational perspective, Computer Science Education 18 (2), 67-92

[6] Rochchoudhury, Abhik and Vaswani, Kapil,(2008) “DARWIN: An
Approach for Debugging Evolving Programs”, Technical Report MSR-
TR-2008-91, Proceeding of the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, Pages 33-42.

[7] Singer, Jeremy,(2005), Concept Assignment as a Debugging Technique
for Code Generators, Fifth IEEE International Workshop on Source
Code Analysis and Manipulation.

[8] Silva, Josep (2005), A Comparative Study of Algorithmic Debugging
Strategies, LOPSTR'06 Proceedings of the 16th international conference
on Logic-based program synthesis and transformation, Pages 143-159

[9] Spohrer, J., & Soloway, E. (1986a). Analyzing the high frequency bugs
in novice programs. In E. Soloway & S. Iyengar (Eds.),Empirical studies
of programmers(pp. 230–251). Norwood, NJ:Ablex.

[10] Stanley, Tyler and Miller, (2009) Causeway: A message-oriented
distributed debugger, Technical Report of HP, HPL-2009-78,

[11] Stamey, John, and Saunders, Bryan (2005), Unit Testing and Debugging
with Aspects, Journal of Computing Sciences in Colleges, Volume 20
Issue 5, May 2005, Pages 47-55

[12] Tubaishat, A. (2001). A knowledge base for program debugging. In
Proceedings of the international conference on computer systems and
applications(pp. 321–327). Beirut: IEEE Press.

[13] Vessey, I. (1985). Expertise in debugging computer programs: A process
analysis.International Journal of Man–Machine Studies, 23, 459–494.

71

This page is left blank on purpose

72

