BAB V
IMPLEMENTASI DAN PENGUJIAN SISTEM

5.1 Lingkungan Implementasi

Lingkungan implementasi meliputi lingkungan perangkat keras (hardware) dan lingkungan perangkat lunak (software). Adapun penjelasannya yaitu sebagai berikut:

1. Lingkungan Perangkat Keras (Hardware)

 Spesifikasi hardware minimal yang diperlukan pada saat implementasi adalah:

 a. Processor Pentium II 667Mhz
 b. Harddisk minimal 2 GB.
 c. RAM 64 MB.
 d. Monitor 14”.
 e. Keyboard
 f. Printer (Option)

2. Lingkungan Perangkat Lunak (Software)

 Spesifikasi software yang digunakan untuk membangun sistem ini adalah:

 a. Sistem Operasi : Windows ME 2000, XP Professional SP1/SP2
 b. Program Aplikasi : Visual Basic 6.0
5.2 Implementasi Antarmuka

Implementasi antarmuka dari pembangunan perangkat lunak simulasi pembelajaran hukum archimedes terbagi dalam beberapa form:

1. Form Utama

Gambar 5.1 Interface Form Utama

Keterangan:
1. untuk masuk ke form Teori
2. untuk masuk ke form simulasi
3. untuk masuk ke menu pemberitahuan (Help)
4. menu Informasi
5. menu keluar dari PL
2. Form Quiz 1

Keterangan:
1. tempat pengisian nama
2. soal untuk quiz 1
3. soal untuk quiz 2
11. lembar soal quiz2

Keterangan:
1. Untuk simpan jawaban
2. Melihat grafik dan hasil jawaban
3. Keluar dari perangkat lunak
4. tempat pengisian soal
2. Form Teori

Gambar 5.2 Interface Form Teori

Keterangan:
1. untuk masuk ke form teori dasar mengapungnya benda dalam fluida
2. untuk masuk ke form teori dasar melayang benda dalam fluida
3. untuk masuk ke form teori dasar tenggelamnya benda dalam fluida
4. untuk masuk ke form teori dasar kemumian suatu zat
5. untuk kembali ke menu utama
3. Form Benda Terapung

Gambar 1.2

BENDA TERAPUNG

perhatikan Gambar 1.2 yang menunjukkan sebuah kayu yang terapung pada suatu fluida pada saat terapung, besar gaya apung F_a sama dengan berat benda $w = mg$. perlu dicatat bahwa pada penelitian ini, hanya sebagian volum benda yang tercepluh di dalam fluida sehingga volum fluida yang diperoleh lebih kecil dari volum total benda yang mengapung.

karena V_i (volum benda yang tercepluh) lebih kecil dari pada V_b (volum benda total), maka syarat benda mengapung adalah (lihat gambar di bawah)

\[F_a = mg \]
\[\rho_f V_i = \rho_b V_b \]
\[V_i = \frac{\rho_b}{\rho_f} V_b \]
\[\rho_b < \rho_f \]

Keterangan:
1. kembali ke form 1.2
2. langsung keluar dan kembali ke menu utama
4. Form Benda Melayang

Gambar 1.2

Rumus dasar benda melayang di air:

\[F_2 = 0 \]
\[F_a = m \cdot g \]
\[\rho \cdot g \cdot V_1 = \rho_b \cdot V_1 \cdot g \]
\[\rho_b = \rho_t \]

Karena, massa jenis benda harus sama dengan massa jenis fluida.

Gambar 5.4 Interface Form Teori Benda Melayang

Keterangan:
1. Kembali ke form teori
2. Langsung keluar dan kembali ke menu utama
5. Form Benda Tenggelam

BENDA

Perhatikan Gambar 3.1 yang menunjukkan sebuah kau yang tenggelam pada suatu fluida pada suatu tenggelam, besarnya gaya apung F₁ tidak diratakan berat benda w.r.t. mg. Namun, gaya normal pada perselisihan volume benda yang terelup dalam fluida sama dengan volume total benda mengapung, namun benda bertumpu pada dasar bejana sehingga ada gaya normal dari bejana pada benda selanjutnya.

Karena V₁ (volume benda yang terelup) sama dengan V₂ (volume benda total), maka syarat benda tenggelam adalah (lihat gambar disamping).

Gambar 1.3

Rumus dasar benda tenggelam dalam fluida:

\[
F_1 = N = m_1g + \rho_1 gV_1 = \rho_2 gV_1 - p_2 gV_1
\]

Gambar 5.5 Interface Form Teori Benda Tenggelam

Keterangan:
1. Kembali ke form Teori
2. Langsung keluar dan kembali ke menu utama
6. Form Kemurnian Zat

Gambar 5.6 Interface Form Teori Kemurnian Zat

Keterangan:
1. kembali ke form Teori
2. langsung keluar dan kembali ke menu utama
7. Form Simulasi

Gambar 5.7 Interface Form Simulasi

Keterangan:
1. menu pemberitahuan
2. kembali ke menu sebelumnya
3. untuk melanjutkan proses setelah memilih kasus
4. keluar dan kembali ke menu utama
5. untuk pemilihan kasus
8. Form Kasus 1

Gambar 3.8 Interface Form Kasus 1

Keterangan:

1. menu pemberitahuan
2. kembali ke menu sebelumnya
3. untuk melanjutkan proses setelah memilih kasus
4. keluar dan kembali ke menu utama
5. untuk inputan data
9. Kasus 2:

Gambar 5.9 Interface Form Kasus 2

Keterangan:
1. menu pemberitahuan
2. kembali ke menu sebelumnya
3. untuk melanjutkan proses setelah memilih kasus
4. ke bawah dan kembali ke menu utama
5. untuk inputan data
10. Kasus 3:

Gambar 5.10 Interface Form Kasus 3

Keterangan:
1. menu pemberitahuan
2. kembali ke menu sebelumnya
3. untuk melanjutkan proses setelah memilih kasus
4. keluar dan kembali ke menu utama
5. untuk inputan data
5.3 Implementasi Fungsi
Pada table implementasi fungsi ini dijelaskan tentang bagaimana langkah-langkah form mulai dari usecase, class tahap analisis dan form implementasi.

<table>
<thead>
<tr>
<th>No</th>
<th>Use Case</th>
<th>Form</th>
<th>Form Implementasi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Utama</td>
<td>Utama</td>
<td>FrmUtama.frm</td>
</tr>
</tbody>
</table>
| 2 | Teori | - tenggelam
 - melayang
 - mengapung | frmTenggelam.frm
 frmMelayang.frm
 frmMengapung.frm |
| 3 | Simulasi | -mengepung,melayang dan
 tenggelam suatu benda
 - kemurnian suatu zat
 - mengetahui kadar suatu benda | FrmInput1.frm
 FrmInput2.frm
 FrmInput3.frm |
| 4 | About | -About | FrmAbout.frm |

Table 5.1 Implementasi Fungsi

5.4 Testing (Pengujuan)
Pengujuan software adalah elemen kritis dan jaminan kualitas software dan merupakan review akhir dari spesifikasi, perancangan dan pengkodean dan table ini di uji dengan tipe black box, data sampel berasal dari sumber asli baik data yang valid maupun data invalid.

<table>
<thead>
<tr>
<th>No</th>
<th>Kasus Uji</th>
<th>Data Masukan</th>
<th>Hasil yang Diharapkan</th>
<th>Pengamatan/Hasil Pengujuan</th>
<th>Kesimpulan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Penggunaan</td>
<td>FrmUtama</td>
<td>Form utama berhasil di tampilkan</td>
<td>FrmUtama tampil</td>
<td>diterima</td>
</tr>
<tr>
<td></td>
<td>FrmUtama</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Penggunaan</td>
<td>FrmTeori</td>
<td>Form teori berhasil ditampilkan</td>
<td>Teori tampil</td>
<td>diterima</td>
</tr>
<tr>
<td></td>
<td>FrmTeori</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Form teori</td>
<td>benda melayang</td>
<td>Frm teori benda melayang tampilkan</td>
<td>Data teori benda melayang berhasil ditampilkan</td>
<td>diterima</td>
</tr>
<tr>
<td></td>
<td>benda melayang</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Form teori</td>
<td>benda mangapung</td>
<td>Frm teori benda mengapung tampilkan</td>
<td>Data teori benda mengapung berhasil ditampilkan</td>
<td>diterima</td>
</tr>
<tr>
<td></td>
<td>benda mangapung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Kasus Uji</td>
<td>Data Masukan</td>
<td>Hasil yang Diharapkan</td>
<td>Pengamatan/Hasil Pengujian</td>
<td>Kesimpulan</td>
</tr>
<tr>
<td>----</td>
<td>--------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>5</td>
<td>Form teori benda tenggelam</td>
<td>Frm teori benda tenggelam tampil</td>
<td>Data teori benda tenggelam berhasil ditampilkan</td>
<td>diterima</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Penggunaan Frmkasus1</td>
<td>Masukan data masa jenis “24”</td>
<td>Simulasi tampil</td>
<td>Simulasi berhasil ditampilkan</td>
<td>diterima</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data masa jenis tidak dimasukan</td>
<td>Pesan berhasil ditampilkan</td>
<td>Pesan tampil</td>
<td>diterima</td>
</tr>
<tr>
<td>7</td>
<td>Penggunaan frmkasus2</td>
<td>Masukan masa jenis udara ”25” Masukan masa jenis udara ”12”</td>
<td>Simulasi tampil</td>
<td>Hasil perhitungan berhasil tampil</td>
<td>diterima</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Masukan masa jenis udara saja</td>
<td>Pesan berhasil ditampilkan</td>
<td>Pesan tampil</td>
<td>diterima</td>
</tr>
<tr>
<td>8</td>
<td>Penggunaan frmkasus2</td>
<td>Masukan masa jenis udara ”25” Masukan masa jenis udara ”12”</td>
<td>Simulasi tampil</td>
<td>Hasil perhitungan berhasil tampil</td>
<td>diterima</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Masukan masa jenis udara saja</td>
<td>Pesan berhasil ditampilkan</td>
<td>Pesan tampil</td>
<td>diterima</td>
</tr>
</tbody>
</table>

Table 5.2 Testing
BAB VI KESIMPULAN DAN SARAN

6.1 Kesimpulan

Dari pelaksanaan tugas akhir dan proses perangkat lunak visualisasi pembelajaran fisika dengan materi hukum archimedes ini, mulai dari tahap analisa, perancangan sampai ke tahap implementasi sistem, dapat diambil kesimpulan sebagai berikut:

1. Dengan di bangunnya perangkat lunak ini dapat dapat meningkatkan minat belajar akan pelajaran fisika derbuki dari hasil pembagian kuesioner yang terlampir pada lampiran A dari 60 siswa yang dibagikan kuesioner hanya 21 siswa yang tidak tertarik sisanya tertarik untuk pada perangkat lunak ini.
2. Dengan di bangunnya perangkat lunak ini dapat menyelesaikan persoalan mengenai hukum archimedes sekaligus menampilkan secara visi.
3. Perangkat lunak ini dapat digunakan sebagai media pembelajaran pendukung yang efektif tanpa memerlukan alat laboratorium dalam proses belajar mengajar.

6.2 Saran

Adapun saran-saran yang ingin disampaikan penulis adalah sebagai berikut:

1. Diharapkan kedepan kuesioner untuk soal-soal diperbanyak dan hasilnya disimpan dalam database.
2. Diharapkan kedepannya adanya tampilan animasi dan efek suara sehingga lebih menarik.
3. Diharapkan kedepan untuk simulasi kasus2 (kemurnian zatI dan simulasi kasus3 (mengetahui kadar suatu benda) dibuat dalam bentukgambar gerak seperti pada simulai kasus1 (syarat tenggelam, melayang, mengapung).

VI-1
DAFTAR PUSTAKA

HASIL OLAHAN DATA KUESIONER
TAHAP AWAL

Perangkat Lunak Visualisasi Pembelajaran Fisika dengan Materi Hukum
Archimedes

Jenjang Pendidikan Responden ?

<table>
<thead>
<tr>
<th>Jenjang Pendidikan</th>
<th>Ya</th>
<th>Tidak</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMKN</td>
<td>80.4</td>
<td>19.6</td>
<td>100</td>
</tr>
<tr>
<td>SMPN</td>
<td>73.2</td>
<td>26.8</td>
<td>100</td>
</tr>
</tbody>
</table>

Pelajaran apa yang anda sukai ?

<table>
<thead>
<tr>
<th>Yang Disukai</th>
<th>Fisika</th>
<th>Biologi</th>
<th>Matematika</th>
<th>Lain-Lain</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMKN</td>
<td>12.2</td>
<td>30.6</td>
<td>24.9</td>
<td>32.3</td>
<td>100</td>
</tr>
<tr>
<td>SMPN</td>
<td>10.8</td>
<td>28.9</td>
<td>26.7</td>
<td>33.6</td>
<td>100</td>
</tr>
</tbody>
</table>
Apakah anda memahami pelajaran Fisika tentang hukum Archimedes?

Mudah di pahami	Ya	Tidak	%
SMKN | 15.7 | 84.3 | 100
SMPN | 13.8 | 86.2 | 100

Apakah anda berminat memperdalam ilmu Fisika?

Mudah di pahami	Ya	Tidak	%
SMKN | 16.4 | 83.6 | 100
SMPN | 12.7 | 87.3 | 100
Apakah anda tahu tentang media pembelajaran berbasis simulasi?

<table>
<thead>
<tr>
<th>SMKN</th>
<th>SMPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ya</td>
<td>27.5</td>
</tr>
<tr>
<td>Tidak</td>
<td>72.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SMKN</th>
<th>SMPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ya</td>
<td>21.7</td>
</tr>
<tr>
<td>Tidak</td>
<td>78.3</td>
</tr>
</tbody>
</table>

Apakah anda pernah menggunakan media pembelajaran berbasis simulasi?

<table>
<thead>
<tr>
<th>SMKN</th>
<th>SMPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ya</td>
<td>16.7</td>
</tr>
<tr>
<td>Tidak</td>
<td>83.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SMKN</th>
<th>SMPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ya</td>
<td>9.6</td>
</tr>
<tr>
<td>Tidak</td>
<td>90.4</td>
</tr>
<tr>
<td>Media Pembelajaran</td>
<td>Fisika</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
</tr>
<tr>
<td>SMKN</td>
<td>8.9</td>
</tr>
<tr>
<td>SMPN</td>
<td>5.5</td>
</tr>
</tbody>
</table>
HASIL OLAHAN DATA KUESIONER
TAHAP AKHIR

Perangkat Lunak Visualisasi Pembelajaran Fisika dengan Materi Hukum Archimedes

Dari hasil simulasi Archimedes beserta perhitungannya, apakah perangkat lunak ini mudah dipahami?

<table>
<thead>
<tr>
<th></th>
<th>Ya</th>
<th>Tidak</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMKN</td>
<td>80.4</td>
<td>19.6</td>
<td>100</td>
</tr>
<tr>
<td>SMPN</td>
<td>73.2</td>
<td>26.8</td>
<td>100</td>
</tr>
</tbody>
</table>

Apakah perangkat lunak ini, dapat membantu anda dari kesulitan dalam perhitungan hingga pemahaman hukum Archimedes?

<table>
<thead>
<tr>
<th></th>
<th>Ya</th>
<th>Tidak</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMKN</td>
<td>74.6</td>
<td>25.4</td>
<td>100</td>
</tr>
<tr>
<td>SMPN</td>
<td>77.8</td>
<td>22.2</td>
<td>100</td>
</tr>
</tbody>
</table>
Apakah Perangkat Lunak perangkat lunak simulasi Archimedes beserta perhitungannya dapat dikategorikan dalam media pembelajaran berbasis simulasi?

<table>
<thead>
<tr>
<th></th>
<th>Ya</th>
<th>Tidak</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMKN</td>
<td>86.7</td>
<td>13.3</td>
<td>100</td>
</tr>
<tr>
<td>SMPN</td>
<td>82.3</td>
<td>17.7</td>
<td>100</td>
</tr>
</tbody>
</table>

Setelah melihat/mencoba Perangkat Lunak Pembelajaran Hukum Archimedes, apakah anda tertarik untuk mencoba media pembelajaran berbasis simulasi lainnya?

<table>
<thead>
<tr>
<th></th>
<th>Ya</th>
<th>Tidak</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMKN</td>
<td>78</td>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>SMPN</td>
<td>74.8</td>
<td>25.2</td>
<td>100</td>
</tr>
</tbody>
</table>
Dari perangkat lunak ini anda lebih tertarik pada bagian apa?

<table>
<thead>
<tr>
<th>Ketertarikan</th>
<th>Hasil Perhitungan</th>
<th>Simulasi Benda</th>
<th>Lain-lain</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMKN</td>
<td>40.5</td>
<td>55.3</td>
<td>4.2</td>
<td>100</td>
</tr>
<tr>
<td>SMPN</td>
<td>36</td>
<td>49</td>
<td>15</td>
<td>100</td>
</tr>
</tbody>
</table>

Menurut anda apakah lebih mudah / efisien menggunakan metode pembelajaran berbasis simulasi dibandingkan metode konfensional (biasa, manual) ?

<table>
<thead>
<tr>
<th>Lebih Efisien</th>
<th>Ya</th>
<th>Tidak</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMKN</td>
<td>84.5</td>
<td>15.5</td>
<td>100</td>
</tr>
<tr>
<td>SMPN</td>
<td>77.9</td>
<td>22.1</td>
<td>100</td>
</tr>
</tbody>
</table>