BAB IV

HASIL PENGOLAHAN DATA DAN PEMBAHASAN HASIL PENELITIAN

Data hasil penelitian yang terkumpul diperoleh dari kuesioner kompetensi guru dan kuesioner bakat guru. Untuk data-data kompetensi guru dan bakat guru terlebih dahulu diuji validitas dan reliabilitasnya kemudian diolah dengan menggunakan analisis statistik deskriptif dan analisis statistik inferensi yang merupakan analisis data secara kuantitatif, selanjutnya hasil olahan data statistik dibahas dalam pembahasan hasil penelitian yang merupakan analisis data secara kualitatif.

4.1 Analisis Validitas dan Reliabilitas

Pengujian validitas dilakukan dengan mengkorelasikan antar skor item instrumen. Jika terdapat item yang tidak valid maka uji validitas dan reliabilitas diulang kembali, sehingga diperoleh item yang valid dan reliabel. Pengujian validitas dan reliabilitas variabel dilakukan dengan menggunakan software SPSS 15, berikut ini disajikan hasil pengujian validitas dan reliabilitas variabel kompetensi dan Bakat :

4.1.1 Analisis Validitas dan Reliabilitas Kompetensi

Hasil uji validitas Kompetensi disajikan pada tabel 4.1 berikut ini :

Tabel 4.1 Hasil Uji Validitas Kompetensi Guru

Pernyataan	Korelasi (r _{hasil})	$t_{ m hitung}$	t_{tabel} (df=n-2= 67; α = 0,05)	Interpretasi
1	0,267	2,2658	1,6645	Valid
2	0,434	3,9384	1,6645	Valid
3	0,555	5,4574	1,6645	Valid
4	0,505	4,7911	1,6645	Valid
5	0,213	1,7813	1,6645	Valid
6	0,251	2,1263	1,6645	Valid
7	0,677	7,5216	1,6645	Valid
8	0,551	5,4027	1,6645	Valid
9	0,536	5,1999	1,6645	Valid
10	0,275	2,3452	1,6645	Valid
11	0,394	3,5135	1,6645	Valid
12	0,269	2,2866	1,6645	Valid
13	0,492	4,6255	1,6645	Valid
14	0,439	4,0034	1,6645	Valid
15	0,357	3,1290	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 15 faktor, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika t_{hitung} < t_{tabel} berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus $t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

sedangkan nilai r_{hasil} dapat diperoleh dari kolom Corrected Item Total Correlation.

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima belas faktor tersebut valid. Ini berarti alat ukur tersebut layak (valid) dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir telah valid, maka dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

H_o = Skor faktor berkorelasi positif dengan komposit konstrak

H_i = Skor faktor tidak berkorelasi positif dengan komposit konstrak

Untuk mengambil keputusan apakah Ho diterima atau ditolak ditentukan sebagai berikut :

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika $r_{hasil} < r_{tabel}$ berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka r_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,816.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,816 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

4.1.2 Analisis Validitas dan Reliabilitas Bakat

Hasil uji validitas dan reliabilitas Bakat disajikan berdasarkan setiap faktor pada tabel berikut ini :

Faktor 1 (Communication)

Tabel 4.2 Hasil Uji Validitas *Communication*

Butir pernyataan	Korelasi (r _{hitung})	$t_{ m hitung}$	$\mathbf{t}_{\text{tabel}(\text{df=n-2=67;}\alpha}$ = 0,05)	Interpretasi
1	0,6965	7,9453	1,6645	Valid
35	0,6596	7,1835	1,6645	Valid
69	0,2125	1,7797	1,6645	Valid
103	0,5386	5,2318	1,6645	Valid
137	0,4818	4,5002	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

 $H_i = Skor$ butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika $t_{hitung} \le t_{tabel}$ berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus $t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

sedangkan nilai r_{hasil} dapat diperoleh dari kolom Corrected Item Total Correlation.

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini berarti layak dijadikan sebagai alat ukur penelitian

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah Ho diterima atau ditolak ditentukan sebagai berikut :

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika $r_{hasil} < r_{tabel}$ berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, mak a diperoleh ang kar_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,750.

Dengan demikian nilai r $_{\rm hasil}$ > $_{\rm tabel}$ (0,750> 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 2 (Empathy)

Tabel 4.3 Hasil Uji Validitas *Empathy*

Butir pernyataan	Korelasi (r _{hitung})	$t_{ m hitung}$	$\mathbf{t}_{\text{tabel(df=n-2=67;}\alpha}$ = 0,05)	Interpretasi
2	0,4661	4,3128	1,6645	Valid
36	0,5877	5,9461	1,6645	Valid
70	0,2641	2,2410	1,6645	Valid
104	0,5654	5,6112	1,6645	Valid
138	0,5000	4,7255	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika $t_{hitung} \le t_{tabel}$ berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus $t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini berarti layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika $r_{hasil} > r_{tabel}$ berarti reliabel, sebaliknya

jika $r_{hasil} < r_{tabel}$ berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5% mak a diperoleh ang kar_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,717.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,717 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 3 (Harmony)

Tabel 4.4 Hasil Uji Validitas *Harmony*

Butir pernyataan	Korelasi (r _{hitung})	$t_{ m hitung}$	$\mathbf{t}_{\text{tabel}(\text{df=}n-2=67;\alpha}$ = 0,05)	Interpretasi
3	0,6141	6,3694	1,6645	Valid
37	0,5533	5,4375	1,6645	Valid
71	0,3303	2,8644	1,6645	Valid
105	0,4898	4,5980	1,6645	Valid
139	0,6421	6,8557	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut:

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah Ho diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika $t_{hitung} < t_{tabel}$ berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus t_{hitung} = $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini berarti layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika r_{hasil} < r_{tabel} berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka r_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,752.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,752 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 4 (Includer)

Tabel 4.5 Hasil Uji Validitas *Includer*

Butir pernyataan	Korelasi (r _{hitung})	t _{hitung}	$\mathbf{t}_{\text{tabel(df=n-2= 67;}\alpha}$ = 0,05)	Interpretasi
4	0,6001	6,1411	1,6645	Valid
38	0,5894	5,9714	1,6645	Valid
72	0,6716	7,4194	1,6645	Valid
106	0,7706	9,8967	1,6645	Valid
140	0,6392	6,8032	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika t_{hitung} < t_{tabel} berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus t_{hitung} = $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini berarti layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

 H_o = Skor butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika r_{hasil} < r_{tabel} berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka r_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,846.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,846 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 5 (Individualization)

Tabel 4.6 Hasil Uji Validitas *Individualization*

Butir pernyataan	Korelasi (r _{hitung})	$t_{ m hitung}$	$\mathbf{t}_{\mathrm{tabel}(\mathrm{df=n-2=67};\alpha}$ = 0,05)	Interpretasi
5	0,6180	6,4337	1,6645	Valid
39	0,4763	4,4338	1,6645	Valid
73	0,3872	3,4377	1,6645	Valid
107	0,6026	6,1813	1,6645	Valid
141	0,4990	4,7127	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_{\circ} diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika t_{hitung} < t_{tabel} berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus $t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini berarti layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

 $H_o = Skor$ butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika r_{hasil} < r_{tabel} berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka r_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,751.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,751 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 6 (Relator)

Tabel 4.7 Hasil Uji Validitas *Relator*

Butir pernyataan	Korelasi (r _{hitung})	$t_{ m hitung}$	$\mathbf{t}_{\text{tabel}(\text{df=}n-2=67;\alpha}$ = 0,05)	Interpretasi
6	0,6139	6,3661	1,6645	Valid
40	0,5324	5,1488	1,6645	Valid
74	0,4402	4,0125	1,6645	Valid
108	0,4607	4,2487	1,6645	Valid
142	0,3140	2,7068	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut:

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika $t_{hitung} < t_{tabel}$ berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus $t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini berarti layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

 $H_o = Skor$ butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika r_{hasil} < r_{tabel} berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka r_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,711.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,711 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 7 (Responsibility)

Tabel 4.8 Hasil Uji Validitas Responsibility

Butir pernyataan	Korelasi (r _{hitung})	$t_{ m hitung}$	$\mathbf{t}_{\text{tabel}(\text{df=n-2=67};\alpha)}$ = 0,05)	Interpretasi
7	0,3779	3,3406	1,6645	Valid
41	0,4357	3,9618	1,6645	Valid
75	0,4609	4,2505	1,6645	Valid
109	0,2835	2,4202	1,6645	Valid
143	0,3161	2,7273	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika $t_{hitung} < t_{tabel}$ berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus t_{hitung} = $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

 $H_o = Skor$ butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut:

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika r_{hasil} < r_{tabel} berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka r_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,617.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,617 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 8 (Command)

Tabel 4.9 Hasil Uji Validitas *Command*

Butir pernyataan	Korelasi (r _{hitung})	$t_{ m hitung}$	$\mathbf{t}_{\text{tabel}(\text{df=}n-2=67;\alpha}$ = 0,05)	Interpretasi
8	0,4692	4,3488	1,6645	Valid
42	0,3865	3,4304	1,6645	Valid
76	0,4335	3,9380	1,6645	Valid
110	0,4480	4,1017	1,6645	Valid
144	0,2639	2,2395	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika t_{hitung} < t_{tabel} berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus $t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

 $H_o = Skor$ butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika r_{hasil} < r_{tabel} berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka r_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,647.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,647 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 9 (Competition)

Tabel 4.10 Hasil Uji Validitas *Competition*

Butir pernyataan	Korelasi (r _{hitung})	$t_{ m hitung}$	$\mathbf{t}_{\text{tabel}(\text{df=n-2=67};\alpha)}$ = 0,05)	Interpretasi
9	0,3976	3,5469	1,6645	Valid
43	0,4867	4,5606	1,6645	Valid
77	0,5496	5,3850	1,6645	Valid
111	0,3808	3,3708	1,6645	Valid
145	0,5193	4,9745	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut:

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_{o} diterima atau ditolak ditentukan sebagai berikut :

jika thitung > ttabel berarti valid, sebaliknya

jika $t_{hitung} < t_{tabel}$ berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus t_{hitung} = $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

 $H_o = Skor$ butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika r_{hasil} < r_{tabel} berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka r_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,709.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,709 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 10 (Developer)

Tabel 4.11 Hasil Uji Validitas *Developer*

Butir pernyataan	Korelasi (r _{hitung})	$t_{ m hitung}$	$\mathbf{t}_{\text{tabel}(\text{df=n-2=67};\alpha)}$ = 0,05)	Interpretasi
10	0,4884	4,5809	1,6645	Valid
44	0,4800	4,4781	1,6645	Valid
78	0,5939	6,0431	1,6645	Valid
112	0,2869	2,4512	1,6645	Valid
146	0,6203	6,4732	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika thitung > ttabel berarti valid, sebaliknya

jika $t_{hitung} \le t_{tabel}$ berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus t_{hitung} = $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini berarti layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

 $H_o = Skor$ butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai

berikut:

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika r_{hasil} < r_{tabel} berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka r_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,726.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,726 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 11 (Maximizer)

Tabel 4.12 Hasil Uji Validitas *Maximizer*

Butir pernyataan	Korelasi (r _{hitung})	$t_{ m hitung}$	$\mathbf{t}_{\text{tabel}(\text{df=n-2=67};\alpha)}$ = 0,05)	Interpretasi
11	0,3956	3,5258	1,6645	Valid
45	0,4059	3,6355	1,6645	Valid
79	0,3326	2,8872	1,6645	Valid
113	0,3837	3,4014	1,6645	Valid
147	0,3087	2,6568	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika $t_{hitung} \le t_{tabel}$ berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus t_{hitung} = $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini berarti layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

 $H_o = Skor$ butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika r_{hasil} < r_{tabel} berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5% maka diperoleh ang kar_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,610.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,6109 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 12 (Positivy)

Tabel 4.13 Hasil Uji Validitas *Positivy*

Butir pernyataan	Korelasi (r _{hitung})	t _{hitung}	$\mathbf{t}_{\text{tabel}(\text{df=n-2=67};\alpha)}$ = 0,05)	Interpretasi		
12	0,6912	7,8290	1,6645	Valid		
46	0,7005	8,0338	1,6645	Valid		
80	0,2638	2,2385	1,6645	Valid		
114	0,6091	6,2867	1,6645	Valid		
148	0,4572	4,2074	1,6645	Valid		

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika $t_{hitung} \le t_{tabel}$ berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus $t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima belas faktor tersebut valid. Ini berarti alat ukur tersebut layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut:

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika $r_{hasil} < r_{tabel}$ berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka r_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,769.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,769 > 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 13 (Woo)

Tabel 4.14 Hasil Uji Validitas *Woo*

Butir pernyataan	Korelasi (r _{hitung})	$t_{ m hitung}$	$\mathbf{t}_{\text{tabel}(\text{df=n-2=67};\alpha)}$ = 0,05)	Interpretasi		
13	0,6912	7,8290	1,6645	Valid		
47	0,7005	8,0338	1,6645	Valid		
81	0,2638	2,2385	1,6645	Valid		
115	0,6091	6,2867	1,6645	Valid		
149	0,4572	4,2074	1,6645	Valid		

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_{o} diterima atau ditolak ditentukan sebagai berikut :

jika $t_{hitung} > t_{tabel}$ berarti valid, sebaliknya

jika t_{hitung} < t_{tabel} berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus t_{hitung} = $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,

Berdasarkan hasil perhitungan, nilai t_{hitung} berada di atas nilai t_{tabel} dan tidak ada yang bernilai negatif maka kelima butir pernyataan tersebut valid. Ini berarti layak dijadikan sebagai alat ukur penelitian.

Analisis Reliabilitas:

Semua butir yang valid dilanjutkan pada analisis reliabilitas, melalui hipotesis sebagai berikut :

 $H_o = Skor$ butir berkorelasi positif dengan komposit faktor

H_i = Skor butir tidak berkorelasi positif dengan komposit faktor

Untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika r_{hasil} > r_{tabel} berarti reliabel, sebaliknya

jika r_{hasil} < r_{tabel} berarti tidak reliabel.

Pada tabel r untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka r_{tabel} 0,245, dan nilai r_{hasil} dilihat dari Cronbach's Alpha yaitu 0,689.

Dengan demikian nilai $r_{hasil} > r_{tabel}$ (0,689> 0,245) maka butir-butir di atas reliabel. Artinya alat ukur tersebut mampu memberikan hasil ukur yang konsisten serta dapat memberikan hasil yang relatif sama jika lakukan pada pengukuran pada waktu yang berbeda, sehingga memungkinkan untuk dilanjutkan sebagai alat ukur penelitian.

Faktor 14 (Achiever)

Tabel 4.15 Hasil Uji Validitas *Achiever*

Butir	Korelasi	thitung	t _{tabel(df=n-2=67;α=}	Interpretasi
pernyataan	$(\mathbf{r}_{ ext{hitung}})$		0,05)	E5-25
14	0,4499	4,1232	1,6645	Valid
48	0,3679	3,2385	1,6645	Valid
82	0,5558	5,4725	1,6645	Valid
116	0,3937	3,5056	1,6645	Valid
150	0,2758	2,3485	1,6645	Valid

Analisis Validitas:

Item statistic berisi data singkat dari 5 butir pernyataan, yang mencakup mean dan standar deviasi dari masing-masing butir. Ada 69 kasus untuk setiap faktor, kemudian diuji validitas kuesionernya dengan terlebih dahulu menentukan hipotesis sebagai berikut :

H_o = Skor butir berkorelasi positif dengan skor faktor

H_i = Skor butir tidak berkorelasi positif dengan skor faktor

Selanjutnya untuk mengambil keputusan apakah H_o diterima atau ditolak ditentukan sebagai berikut :

jika t_{hitung} > t_{tabel} berarti valid, sebaliknya

jika t_{hitung} < t_{tabel} berarti tidak valid.

Pada tabel t untuk df = jumlah kasus -2 yaitu dalam kasus df = 69 - 2 = 67, tingkat signifikasi (α) 5%, maka diperoleh angka t_{tabel} 1,6645.

Nilai t_{hitung} diperoleh dari perhitungan dengan menggunakan rumus $t_{hitung} = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$,